
Lecture 2. Phenomenology of (classic) superconductivity   Phys. 598SC – Fall 2015 
          Prof. A. J. Leggett 

     (References: de Gannes chapters 1-3, Tinkham chapter 1) 

Statements refer to “classic” (pre-1970) superconductors (Al, Sn, Pb, alloys…). Most but not all 
statements apply also to HTS, fullerenes, heavy-fermions, organics… 

1. Definition of superconductivity 
The superconducting state differs qualitatively from the normal (non-
superconducting) state in 3 major respects: 
(a) d.c. conductivity (in zero magnetic field & for small enough current) effectively 

infinite (seen either in voltage-drop experiments, or in persistence of current in 
rings) 

(b) simply connected sample expels weak magnetic field (Meissner effect): perfect 
diamagnet, i.e. B = 0. [convention for H, B later] 

(c) Peltier coefficient* vanishes, i.e. electrical current not accompanied by heat 
current (contrary to usual behavior in normal phase). 

_________ 

These three phenomena set in essentially discontinuously at a critical temperature Tc 
which may be anything from ~1 mK to ~25K (higher for HTS, etc.) For most 
elements & alloys, Tc ~ a few K. (Note: this is ~3-4 orders of magnitude below TF and 

~1-2 below D) Onset is abrupt: no reliable way of telling, from N-state bulk 
measurements, whether superconductivity will set in at all, let alone at what 
temperature. (but cf. proximity-effect measurements on Cu etc.). 

 

2. Occurrence 
Superconductivity appears to occur only in materials which in the normal phase 

(i.e. above Tc) are metals or (occasionally, under extreme conditions) semiconductors:  
There is no clear case in which, as T is lowered, the system goes from an insulating to 
a S state†.  In the case of the classic superconductors, N state is almost always a 
“textbook” metal (see (3) below). 

 However, the correlation between N-state conductivity  and the occurrence of 
superconductivity is negative: the best N-state conductors (Cu, Ag, Au) do not 
become superconducting (at least down to 10 mK, and there is some reason to believe 
they never will). In the periodic table of the elements, superconductivity occurs 

                                                 
*Peltier coefficient  is defined as ratio of heat current to electric current forT=0: see Ziman, P. Th. Solids, pp. 
201-2. 
†Theoretically such a transition is predicted to be possible under extreme conditions. The experimental evidence is 
unconvincing for the classic superconductors and ambiguous for HTS: M.V. Sadovskii, Phys. Rev. 282, 226 (1997). 
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mainly in the middle: see AM p. 726, table 34.1, or Kittel (3rd edition), p. 338, table 2. 
Many intermetallic compounds, e.g. Nb3,Sn, V3,Ga, often with high Tc (~20K). 
 Superconductivity is not destroyed by nonmagnetic impurities, in fact Tc 
sometimes increases with alloying & there are thousands of superconducting alloys, 
including some with very high (20-25K) Tc. But magnetic impurities (i.e. impurities 
carrying electrons with nonzero total spin) are rapidly fatal: e.g. pure Mo is 
superconducting with Tc~1K, but a few ppm of Fe drives Tc to zero. No known case 
among classic superconductors where superconductivity coexists with any form of 
magnetic ordering. (but situation in “exotics” more complicated) 
 Isotope effect: in most though not all cases of classic superconductivity,  

Tc  M-1/2.  (crucial clue to mechanism) 
 

3. Normal state of superconductors 
Almost all the classic superconductors are, above Tc, “textbook” normal metals:  

i.e. Cv~T, ~ const., ~const. + f(T)      (f(T) ~ T for T  D), /T = const., etc. 

 
4. Magnetic behavior of superconducting phase 

For a given material, the magnetic behavior is in general a function of the shape of 
the sample: the simplest case to analyze is a (large) long cylinder parallel to the 
external field. In this case, there are 2 types of behavior, type-I and type-II. Most pure 
elemental superconductors are type-I (exception: pure Nb): compounds and alloys 
tend to be type-II, and this is the case for virtually all the highest-Tc materials. 
 
(a) Type-I: At any given T < Tc(0), if we gradually raise H, system remains perfectly 

superconducting up to a definite critical field Hc(T), at which point it goes over 
discontinuously (by a first-order transition) to the normal phase and readmits the 
magnetic field completely. In terms of the B(H) relation*: 

 

                                                 
*It is conventional in the theory of superconductivity to define H as the field due to external sources, and B as the 
total local field averaged over a few atomic distances. Thus, B = oH + M where M is the average magnetization 
due to macroscopic circulating currents. (Atomic-scale variations usually not considered) 
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The shape of Hc(T) is approximately 
[actually more curved at low T] and is 
well fit by the formula (1-(T/Tc)2) 

 

 

The reason for the existence and behavior of the critical field Hc(T) is a 
straightforward thermodynamic one: the S state has a negative (condensation) 
energy relative to the N state, but since it excludes the magnetic field entirely, this 
costs an (extra) energy 

 dEmag = -M  dHext Emag = + ½oH2
extV   (S1 units) 

since M is oppositely directed to Hext (diamagetism). (B = 0  M = -oH)  (This 
is essentially the energy necessary to “bend” the field lines so as to avoid the 
sample) (levitation). In the normal phase, excluding small atomic-level magnetic 
effects, the extra energy is zero. Thus it becomes energetically advantageous to 
switch to the N phase at the point 

 Gn(T) – Gs(T) = ½ oH2  ½oH2
c(T)  [ transition 1st order] 

and this is a useful method of measuring the LHS. (See below (5)). 

 Above analysis is for a “large” sample. Actually, there is a characteristic 

length  (cf. below) over which field penetrates. Thus, for sample sizes < , we 
expect the thermodynamic critical field to be higher, and this is indeed seen. 

 Note also that for samples of less convenient shape may get a break-up 
into N and S regions (intermediate state: distinguish from “mixed” state, below). 

(b) Type-II: start with T < Tc(H = 0), turn up field H. For sufficiently small field 
behaves as type–I, i.e. expels flux completely (“Meissner state”). Above a “lower 

critical field” Hc1, flux begins to penetrate, so M is negative but |M| < oH, so B > 
0. As H further increased, M becomes smaller until at an “upper critical field” Hc2 
it vanishes (in the bulk) & system switches to normal state. Apart from this, in the 
“mixed” state between Hc1 and Hc2 system behaves in a typically superconducting 
way (though cf below for resistive behavior). 
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Anticipate: in mixed state, magnetic field punching through in form of vortices 
(cores effectively normal), while bulk remains superconducting. 

 Can define Hc(T) for type-II as above from Gn – Gs. Then, to an order of 

magnitude Hc1  Hc2 ~ Hc
2. Typically Hc1 ~ a few G, Hc2 ~ several T. (30T for 

V3Ga) 

5. Resistance 
One can make one simple statement about the d.c. resistance R of a superconductor: 
For any bulk type-I superconductor when the field (including that generated by the 
current) is everywhere less than Hc(T), or for a bulk type-II superconductor when it is 
less than Hc1(T), the effective resistance is zero. It is also true that for a type-I 
superconductor, those parts which are in a field < Hc(T) have local resistivity zero: 
however, because any current will generate a spatially varying field, the total 
resistance even of a thin wire is a quite complicated function of current*. For a single 

wire (dimensions  ) in zero external magnetic field the resistance is zero up to a 
critical current Ic(T) defined by Silsbee’s rule, i.e. 
  Ic(T) = Hc (T)a/2,   a=radius of wire 
 
As I is increased beyond Ic(T), the resistance jumps discontinuously to a value ~ 0.7 – 

0.8 of the normal-state value, and for I  Ic(T) approaches the latter. 
 For type-II superconductors situation is even more complicated, because in 
general in the mixed phase even local resistivity is not zero, (due to the possibility of 
flux flow). A formula which often describes the behavior in this region quite well is 
(cf. Tinkham section 5.5.1) 

  /n  Bo /Hc2 

[effect of pinning] 

                                                 
* See Tinkham section 3-5. 
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Again, in a thin wire resistance first develops when Ic = Hc2(T)a/2 and tends to the 

normal value asymptotically as I  . 
The above all refers to d.c. resistance. The a.c. resistance is nonzero even when all 
regions of the superconductor are in the Meissner phase: generally speaking, R 

increases as some power of  
 

6. Microscopic properties of the superconducting phase 
(a) Specific heat Cv. (after subtraction of phonon terms)  

This is T in the N phase. There is a jump† at Tc, such that Cv/Cv
(n)  1.4 (or 

sometimes a little greater, up to 2.65 for Pb).  For T  Tc Cv drops below the N 

state value, and as T0 follows  

 Cv|T0 ~ exp - /T 
 
 
 
where  is a constant of the order 
of kBTc. 

 

 A very useful relation between the specific heat and the thermodynamic 
critical field Hc(T) can be obtained by differentiating twice the relation  

Gn – Gs = 1/2o Hc
2(T), namely 

  

(and 	   transition 1st order in finite H) Although in this 

relation cn and cs should strictly speaking be evaluated at H = Hc(T), it is usually 

adequate to insert the H = 0 values. In particular as T  Tc (Hc  0) we have 

  

  

                                                 
† Note the fact that cs ~ cn indicates only electrons with ~ kBTc (much) affected by the onset of superconductivity. 
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This can be checked experimentally, and is often used to determine cs more 

accurately.  Note that since cs 0 as T0 while cn  T, the form of  (hence 

also of Hc) in this limit is Hc(T)  Hc (O)(1-(T/T*)2) where T* ~ Tc. 

(b) Pauli susceptibility    (Type – I) 
 
       This can often be measured 
from the Knight shift. We find  
drops off sharply for T < Tc and as 
T=0 tends exponentially to zero, 
like cv. 

(c) Ultrasound attenuation () 

The longitudinal attenuation remains proportional to  as in the normal 
phase, but the coefficient drops off sharply. (roughly as (T/Tc)4) The 
transverse ultrasonic attenuation has a discontinuous drop at Tc 
(consequence of Meissner effect), thereafter drops similarly. 
 

(d) Thermal conductivity () 
The thermal conductivity in the N phase for T~Tc is usually dominated by 
electrons rather than phonons. Generally speaking it has no discontinuity 
in the superconducting phase, but drops similarly to the ultrasonic 

attenuation and 0 for T0. (For low enough T, phonons may again 
dominate). 
 

(e) Nuclear relaxation rate  

In the N state Γ ≡  is roughly T. (Korringa law). As T falls below Tc,  first 

rises (the famous Hebel-Slichter peak) then falls, roughly similar to ., and 0 as 

T0. 

EM absorption (as seen e.g. in reflectivity): lower than in N state at low , rises 

sharply at ~2, when  is “gap” observed in cv. 
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(f) Tunneling. 

The tunneling current between two N metals, whether the same or different, is 
usually proportional to the voltage applied across the barrier, so dI/dV = const.  
When one metal is a S and the other a N metal, no current flows for either polarity 

until e|V|=, where  is the same quantity as appears in the low-temperature 
specific heat.  If we plot dI/dV rather than I(v) 

 

          

 

At finite T < Tc: 

 

                         

 

If both metals are S, we get qualitatively similar behavior, with however  replaced by the sum 

1 + 2. 

 [Also:  Josephson tunneling] 
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(g)  Penetration depth.   

 

This is one quantity which is not defined in the N phase:  it is the depth to which, in the Meissner 
phase, an EM field penetrates into the surface of the superconductor.  It turns out to be more 

convenient to plot -2(T), which as we shall see has a direct physical interpretation: 

 

 

 tends exponentially to its T=0 limit as T   0, again with an exponent ~/kT, and diverges in 

the limit T  Tc, as (1 – T/Tc)–1/2. 

 

 


